Comparing and Validating Methods of Reading Instruction Using Behavioural and Neural Findings in an Artificial Orthography

نویسندگان

  • J. S. H. Taylor
  • Matthew H. Davis
  • Kathleen Rastle
چکیده

There is strong scientific consensus that emphasizing print-to-sound relationships is critical when learning to read alphabetic languages. Nevertheless, reading instruction varies across English-speaking countries, from intensive phonic training to multicuing environments that teach sound- and meaning-based strategies. We sought to understand the behavioral and neural consequences of these differences in relative emphasis. We taught 24 English-speaking adults to read 2 sets of 24 novel words (e.g., /buv/, /sig/), written in 2 different unfamiliar orthographies. Following pretraining on oral vocabulary, participants learned to read the novel words over 8 days. Training in 1 language was biased toward print-to-sound mappings while training in the other language was biased toward print-to-meaning mappings. Results showed striking benefits of print-sound training on reading aloud, generalization, and comprehension of single words. Univariate analyses of fMRI data collected at the end of training showed that print-meaning relative to print-sound relative training increased neural effort in dorsal pathway regions involved in reading aloud. Conversely, activity in ventral pathway brain regions involved in reading comprehension was no different following print-meaning versus print-sound training. Multivariate analyses validated our artificial language approach, showing high similarity between the spatial distribution of fMRI activity during artificial and English word reading. Our results suggest that early literacy education should focus on the systematicities present in print-to-sound relationships in alphabetic languages, rather than teaching meaning-based strategies, in order to enhance both reading aloud and comprehension of written words. (PsycINFO Database Record

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of coal swelling index based on chemical properties of coal using artificial neural networks

Free swelling index (FSI) is an important parameter for cokeability and combustion of coals. In this research, the effects of chemical properties of coals on the coal free swelling index were studied by artificial neural network methods. The artificial neural networks (ANNs) method was used for 200 datasets to estimate the free swelling index value. In this investigation, ten input parameters ...

متن کامل

Comparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks

Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...

متن کامل

Constructing and Validating a Q-Matrix for Cognitive Diagnostic Analysis of a Reading Comprehension Test Battery

Of paramount importance in the study of cognitive diagnostic assessment (CDA) is the absence of tests developed for small-scale diagnostic purposes. Currently, much of the research carried out has been mainly on large-scale tests, e.g., TOEFL, MELAB, IELTS, etc. Even so, formative language assessment with a focus on informing instruction and engaging in identification of student’s strengths and...

متن کامل

ESP Instruction: Traditional vs. Eclectic Method in Relation to Reading Comprehension of Iranian Agriculture Students

This study aimed at finding out the effect of two different methods of ESP instruction, namely, the traditional grammar translation method and an eclectic method on improving university students' reading comprehension ability. The main assumption was that compared to the Grammar-Translation which is probably not an efficient method, an eclectic method that focuses on improving reading comprehen...

متن کامل

Evaluation of Ultimate Torsional Strength of Reinforcement Concrete Beams Using Finite Element Analysis and Artificial Neural Network

Due to lack of theory of elasticity, estimation of ultimate torsional strength of reinforcement concrete beams is a difficult task. Therefore, the finite element methods could be applied for determination of strength of concrete beams. Furthermore, for complicated, highly nonlinear and ambiguous status, artificial neural networks are appropriate tools for prediction of behavior of such states. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2017